



# Acker-Schachtelhalm

Equisetum arvense Zinnkraut, Katzenwadel, Scheuerkraut (Fam. Equisetaceae, Schachtelhalmgewächse)

# KRÄUTERBESCHREIBUNG

Unter den einheimischen Arten der Gattung *Equisetum* ist der Ackerschachtelhalm (*Equisetum arvense*) die bekannteste Art. Im zeitigen Frühjahr erscheinen zunächst einfache, braune Triebe mit einer Blüte (Sporophyllähre) an der Spitze, welche die Sporen zur Vermehrung entlässt. Erst im Sommer treiben nach dem Absterben der Sporenträger die grünen, unfruchtbaren Triebe aus. Diese sind 20 bis 30 cm hoch, der Länge nach gerippt und tragen quirlförmige, meist 4-kantige und einfache Seitenäste.

## Verwandte Kräuter

Weitere Arten neben dem Acker-Schachtelhalm sind in Mitteleuropa u. a. der Riesen(E. telmateia), Wiesen- (E. pratense), Wald- (E. sylvaticum), Sumpf- (E. palustre) und Winter- (E. hyemale) sowie der Dyces-Schachtelhalm

(*Equisetum x dycei*). Zu Heilzwecken dienen nur der Acker- und der Winter-Schachtelhalm.

Die größte einheimische Art ist der Riesen-Schachtelhalm (1,6 bis 2 m hoch). Er wächst auf feuchten, meist kalkreichen Böden; in Deutschland vor allem in den südlichen (Mittelgebirge, Voralpen und Alpen) und seltener auch in nördlichen Landesteilen (Rügen, Mecklenburg-



Vorpommern).

# **VORKOMMEN**

# **Herkunft und Verbreitung**

Die Gattung *Equisetum* ist ein Relikt der Familie der Schachtelhalmgewächse. Fossile Blattabdrücke aus dem Oberkarbon und frühen Perm (vor ca. 300 Millionen Jahren) belegen die Verbreitung eines Verwandten der Schachtelhalme, *Asterophyllites equisetiformis*, z. B. nach Funden im Kammerberg in Manebach (Thüringer Wald).

Ihre größte Entfaltung hatten die Schachtelhalme jedoch im Erdmittelalter (Mesozoikum, vor 225 bis 136 Millionen Jahren). Erreichten die damaligen Equiseten Baumhöhen bis zu 40 m, so gibt es heute nur noch eine einzige Art, die bis zu 12 m hoch wird (*Equisetum giganteum* im tropischen Südamerika).

Der einheimische Acker-Schachtelhalm Equisetum arvense wächst überwiegend in den nördlichen gemäßigten Breiten (globale Verbreitung: Eurasiatisch-nordamerikanisch), aber auch in einigen an Europa angrenzenden Gebieten, z.B. in Marokko und in der Türkei bis zum Kaukasus.

## **Standorte**

Typische Standorte sind Auen, Weidengebüsche und feuchte Trittfluren. Der mehrjährige, bis 50 cm hohe Geophyt kommt verbreitet auf Kulturland (Äcker, Wiesen) und an Weg- und Waldrändern vor – vorausgesetzt, der Boden ist permanent feucht und lehmig. Der Acker-Schachtelhalm bevorzugt neutrale bis basische Böden (pH 5,5–8,5) und halbschattige Standorte in subkontinentalem Klima.

#### **Umwelt, Naturschutz**

Der Acker-Schachtelhalm ist in keiner "Roten Liste" verzeichnet und nicht besonders geschützt. In der Landwirtschaft gilt er zudem als Indikator für mangelhafte Qualität des Ackerbodens (z. B. Bodenverdichtung,



Humusmangel, hoher Grundwasserstand und Nässe). Seine bis zu 2 Meter tief in den Boden reichenden, verdickten und bewurzelten Sproßachsen (Speicherorgane) lassen sich durch

Pflügen kaum entfernen. Weil er sich auch mit "Unkraut"-Bekämpfungsmitteln (Herbiziden) meist nicht vollständig beseitigen lässt und Pflanzenteile mit dem an Fahrzeugen und Geräten haftenden Boden auf weitere Ackerflächen verbreitet werden können, ist er in der Landwirtschaft unerwünscht.

# **BRAUCHTUM**

Schon in antiken Schriften der Römer und Griechen wird der Acker-Schachtelhalm als Heilpflanze erwähnt. So pries der griechische Arzt Dioskurides (1. Jh. n. Chr.) die adstringierende (= zusammenziehende), harntreibende und speziell die blutstillende Eigenschaft des Schachtelhalms bei Blutungen der Gebärmutter und der Harnorgane. Der Römer Plinius d. Ä. (gest. 79 n. Chr.) vertrat sogar die Auffassung, man brauche die Pflanze nur in der Hand zu halten und schon versiege der Blutfluss.

Im Mittelalter lobte der Kirchenlehrer und Naturforscher Albertus Magnus (ca. 1200 bis 1280) den Ackerschachtelhalm als blutstillendes Mittel und seine wohltuende Wirkung auf die Milz. In der Neuzeit war er in der Volksheilkunde unpopulär und wurde erst durch Pfarrer Kneipp (1821-1897) wiederentdeckt. Neben der blutstillenden Eigenschaft, wie sie seit dem Altertum bekannt war, schätzte er seine positive Wirkung bei Blasenentzündungen, Gallen- und Nierensteinen sowie bei eiternden Wunden und Geschwüren. Auch bei Lungenerkrankungen setzte Pfarrer Kneipp, der selbst als junger Student an Tuberkulose erkrankt war, den Schachtelhalm erfolgreich ein.

In anderen Kulturen wird er ebenso als Heilpflanze geschätzt. Die Indianer gebrauchten ihn bei Nieren- und Leberleiden und seine Wurzeln als blutstillendes Mittel, die sie auf Reisen stets mit sich trugen. In China und Indien wird der Schachtelhalm zum Reinigen von Blut, gegen Harnwegsinfektionen, bei Nierensteinen und zur Regeneration von Knorpel- und Bindegewebe nach Knochenbrüchen verwendet.

In der traditionellen Pflanzenheilkunde nimmt man ihn wegen seines Gehalts an mineralischen Salzen auch gegen die Brüchigkeit von Knochen bei älteren Menschen, zur Heilung bei Knochenbrüchen und bei brüchigen Nägeln.

# Wissenswertes

Acker-Schachtelhalm wird volkstümlich auch Zinnkraut genannt, weil er früher aufgrund des hohen Kieselsäuregehalts zum Reinigen von Zinngeschirr, aber auch von Messing und Kupfer benutzt wurde. Melker entfernten mit den Wedeln den Milchstein in ihren Milchkannen und Tischler polierten damit die Möbel glatt (Name: Scheuerkraut).

Der Gattungsname *Equisetum* leitet sich vom lateinischen Wort equus (= Pferd) und seta (= Borste, Haar) sowie vom griechischen Wort hippouris (= Pferdeschwanz) ab, woraus sich die volkstümliche Bezeichnung "Katzenwadel" entwickelte; "arvensis" (= "zum Acker gehörend)."

# **EIGENSCHAFTEN**

# Inhaltsstoffe, Eigenschaften, Wirkung

Die wichtigsten Inhaltsstoffe von *E. arvense* sind 5-8 % Kieselsäure und Flavonoide (Quercetinglykoside). Die Unterscheidung von anderen Equisetum-Arten kann analytisch durch den Nachweis von Dicaffeoyl-meso-Weinsäure erfolgen. Die wirksamen Substanzen des giftigen Sumpf-Schachtelhalms sind dagegen Alkaloide (Palustrin), außerdem enthält die Pflanze u. a. Kämpferolglykoside und im Vergleich zu *E. arvense* einen geringeren Anteil an Nikotin.

Wirksamer Bestandteil des Schachtelhalms ist vor allem die teilweise lösliche und vom Körper resorbierbare Kieselsäure. Sie sorgt für eine Funktionssteigerung der Leukozyten (= weißen Blutkörperchen), fördert die Blutgerinnung und trägt zur Regeneration von Bindegewebe bei. Die Wirkung im Urogenitaltrakt beruht auf der adstringierenden (= zusammenziehenden, das Gewebe verdichtenden) Wirkung. Schachtelhalm hat außerdem eine schwach harntreibende (diuretische) Wirkung.

# Forschung

Eine Literaturübersicht (Review) zur medizinischen Verwendung von *Equisetum* arvense (volkstümlich und traditionell; vorklinische und klinische Studien) geben Carneiro et al. (2019).

Die Europäische Behörde für Lebensmittelsicherheit (EFSA) erstellte für die Europäische Kommission einen wissenschaftlichen Bericht zur Bewertung eines Antrags, dass *Equisetum arvense* als Grundstoff für den Einsatz im Pflanzenschutz gegen Pilzkrankheiten im Gartenbau und beim Gemüseanbau genehmigt wird (EFSA 2020).

Durch Einsatz von Siliziumnanopartikeln (NpSi) will man in der Landwirtschaft höhere Erträge erzielen und biotischem und abiotischem Stress in Kulturpflanzen entgegenwirken. NpSi sollen das Pflanzenwachstum stimulieren, die Resistenz gegen verschiedene biotische und abiotische Belastungen verbessern, die Menge der ausgebreiteten Chemikalien reduzieren, Düngeverluste minimieren und den Ertrag durch Schädlings- und

Nährstoffmanagement steigern (García-Gaytán et al. 2019).

Der Pflanzenextrakt von *Equisetum arvense* wird als Reduktions- und Verkappungsmittel angewendet, um Silberionen im Batch-Verfahren zu Silbernanopartikeln (AgNPs) zu reduzieren. Antibakterielle Aktivitätstests mit *Escherichia coli* und *Staphylococcus aureus* zeigten, dass AgNPs das Bakterienwachstum reduzierten und genau definierte Hemmzonen erzeugten (Sedaghat & Omidi 2019).

Schachtelhalm lässt sich zudem als natürlicher Lignocellulose-Füllstoff für eine Naturkautschuk-Matrix verwenden, der die mechanische Festigkeit positiv beeinflusst, bis zu 180 °C thermisch stabil ist und aufgrund des Vorhandenseins von Flavonoiden und Phenolsäuren den durch thermooxidative, ultraviolette Strahlung und Verwitterung verursachten Alterungsprozess vermindert (Maslowski et al. 2020).

Aufgrund des hohen Kieselsäure-Gehalts (> 30 Gew.-%) ist *Equisetum arvense* einer der höchsten Si-Akkumulatoren im Pflanzenreich und lässt sich als preiswerte und umweltfreundliche Anode für Li-Ionen-Batterien (SiOx/C-Verbundwerkstoff) verwenden, die hohe reversible Kapazitäten aufweisen (Chen et al. 2020).

#### Warnhinweise

Der Sumpf-Schachtelhalm (*Equisetum palustre*) und wahrscheinlich auch der Dyces Schachtelhalm (*Equisetum x dycei*) sind **giftig**. Die Schachtelhalm-Arten sind nicht leicht zu unterscheiden. Unkundige sollten besonders in Sümpfen und Wäldern auf das Sammeln verzichten.

Die Giftwirkung auch der nicht giftigen *Equisetum*-Arten beruht zumeist auf einem Befall mit dem Schmarotzerpilz *Ustilago equiseti*. Er ist an braunen Flecken auf der Pflanze erkennbar und enthält das toxische Alkaloid Equisetin, das dem Körper u. a.



Vitamin B1 entzieht. Nach dem Genuss von pilzbefallenem Schachtelhalm treten sowohl bei Tieren (Weidetieren) als auch beim Menschen Vergiftungserscheinungen auf (bei Kühen: Durchfall, Gewichtsverlust, die Milch wird sauer und der Milchfluß versiegt; bei Pferden: unruhiges Verhalten, Muskelzittern und taumelndem Gang, später völlige Erschöpfung; Taumelkrankheit).

Schachtelhalm-Präparate reizen den Verdauungstrakt und sollten bei längerer Anwendungsdauer wie auch bei eingeschränkter Herz- oder Nierentätigkeit nur unter ärztlicher Aufsicht eingenommen werden.



# **ANWENDUNG**

# **Anwendungsgebiet**

Arzneidroge: **Equiseti herba** (Schachtelhalmkraut)

Innere Anwendung zur Behandlung von Krankheiten des Urogenitaltrakts, z. B. bei bakteriellen und entzündlichen Erkrankungen der ableitenden Harnwege wie Blasenund Harnröhrenentzündung, bei Nierengries (Harngries) und auch bei Prostata-Erkrankungen. Es gibt erste Anhaltspunkte, dass ein alkoholischer Extrakt von *Equisetum arvense* zytotoxisch wirkt und das Wachstum von Brustkrebszellen und Lymphozyten hemmen könnte (Abeer Habeb Ahmed et al. 2019).

Die Wirksamkeit läßt sich durch klinische Studien noch nicht ausreichend belegen.

Äußere Anwendung bei schlecht heilenden Wunden und Ekzemen.

## **Anwendungsart**

Beim Schachtelhalm sind nur die grünen (sterilen) Stengel – frisch oder getrocknet – verwendbar. Die oberen zwei Drittel der Triebe sollten in der Zeit vom Mai bis zum Frühsommer geerntet werden, weil das in der Kieselsäure enthaltene Silizium nach Abschluss des Pflanzenwachstums nicht mehr löslich ist. In Bündeln lässt man die Triebe in der Sonne oder bei niedrigen Temperaturen im Backofen trocknen und bewahrt sie dann luftdurchlässig (z. B. in einem Pappkarton) auf. Zur Anwendung wird das Kraut zerkleinert. Bei der Durchspülungstherapie (innere Anwendung) wird eine mittlere Tagesdosis von 6 g Droge empfohlen, wobei auf reichliche Flüssigkeitszufuhr zu achten ist. Zur äußeren Anwendung nimmt man 10 g Droge auf 1 Liter Wasser.

# **PRODUKTE**

#### Tee

Aus dem badischen Raum wird der Brauch überliefert, daß junge Männer für das umworbene Mädchen einen Tee aus den Sporenähren des Riesenschachtelhalms (*Equisetum maximum*) kochten.

×

Nach der ayurvedischen Heilslehre Indiens soll Schachtelhalm-Tee die Nerven beruhigen und den Geist von übermäßigen feurigen Gefühlen (Pitta-Zuständen) reinigen.

# Rezept für Equisetum-Tee:

Für 1 Liter Tee wird etwa 20 g klein geschnittenes frisches oder getrocknetes Kraut benötigt. Man gießt kaltes Wasser darüber und läßt den Tee ca. 30 Minuten kochen. Nach dem Abseihen 2-3 Tassen pro Tag schluckweise trinken. Achtung: Schachtelhalm-Tee ist wie andere harntreibende Tees nicht für Personen geeignet, die aufgrund einer Herz- und Niereninsuffizienz unter Wasserstauungen im Körper leiden.

Ackerschachtelhalm ist auch Bestandteil einiger im Handel erhältlicher Blasen- und Nierentees.

# Speisen

Im 16. Jahrhundert berichtete der italienische Arzt und Botaniker Matthioli von dem zur Fastenzeit üblichen Brauch, fertile Sprosse des Acker-Schachtelhalms anstelle von Fisch in Wasser zu kochen und in Mehl gewälzt in der Pfanne zu braten. In Rußland werden die Sporentriebe und die jungen Sprosse im Frühjahr gesammelt und für Suppen, Salate, Aufläufe und Fleischpasteten (Piroggen) benutzt. Ansonsten kennt man in Mitteleuropa offenbar keine Kochrezepte mit dem Schachtelhalm.

## Kosmetik

Bei spröden Haaren soll deren Auswaschen mit einem konzentrierten Schachtelhalmaufguß helfen (10 zerkleinerte Stengel auf einen halben Liter Wasser). Auch in manchen Badezusätzen ist der Acker-Schachtelhalm enthalten.

Eine Creme aus hydroalkoholischem Schachtelhalm- und Sojabohnenextrakt könnte der Bildung von altersbedingten Hautfalten entgegenwirken. Die Wirkung soll auf antioxidative Eigenschaften und die enthaltenen Mineralien und Vitamine zurückzuführen sein (Nojomi 2019).

## **Tipps**

Der Schachtelhalm eignet sich vorzüglich zum Polieren von Metallgegenständen, aber auch von Holz.

→ nach oben

→ **zurück** zur Übersicht



Letzte Änderung: 15. November 2025

Letzte inhaltliche Änderung/Überprüfung: 1. März 2025

#### Zitierweise:

Pelz, Gerhard Rudi & Birgitt Kraft (2020): Acker-Schachtelhalm (*Equisetum arvense*) – in: Kräuter-ABC, Website der Stiftung zur internationalen Erhaltung der Pflanzenvielfalt in Brunnen/Schweiz: <a href="https://www.kraeuterabc.de">www.kraeuterabc.de</a> (abgerufen am .....).

# **BILDNACHWEISE UND ZITIERTE LITERATUR**

#### **Bildnachweise**

• Verbreitungskarte (*Equisetum* sp.):Euro+Med PlantBase Project. Botanical Museum, Helsinki, Finland 2018; Data from BGBM Berlin-Dahlem, Germany. Source: World Checklist of Selected Plant Families (2010), © The Board of Trustees of the Royal Botanic Gardens, Kew.

alle weiteren Fotos:

© Dr. Gerhard Rudi Pelz, Petersberg

# Zitierte Literatur

→ Standardwerke, Lehrbücher und weiterführende Literatur finden Sie im Literaturverzeichnis (home-Seite oder (http://www.kraeuterabc.de/literatur/)

**Abeer** H. A. (2019): Cytotoxic Effect of Alkaloid Extract of *Equisetum arvense* Plant on Human lymphocytes and MCF7 Cancer Cell Line. – Diyala Journal For Pure Science **15** (02): 38–52.

**Carneiro**, D. M. et al. (2019): *Equisetum arvense*: New Evidences Supports Medical use in Daily Clinic. - Pharmacogn Rev. **13** (26): 50–58.

**Chen**, Y. et al. (2020): Hierarchical porous architectures derived from low-cost biomass *Equisetum arvense* as a promising anode material for lithium-ion batteries. – Journal of Molecular Structure **1221**: 128794.

EFSA (2020): Outcome of the consultation with Member States and EFSA on the basic substance

application for approval of *Equisetum arvense* L. for the extension of use in plant protection against fungal diseases on horticulture and vegetable crops. – European Food Safety Authority (EFSA), Technical Report, 19 May 2020 (doi:10.2903/sp.efsa.2020.EN-1869).

**García-Gaytán**, V. et al. (2019): Polymerized silicon (SiO2 ·nH2 O) in *Equisetum arvense*: Potential nanoparticle in crops. – J. Chil. Chem. Soc. **64** (1): 4298-4302.

**Masłowski**, M. et al. (2020): Horsetail (*Equisetum arvense*) as a Functional Filler for Natural Rubber Biocomposites. – MDPI Materials **13**: 2526; doi:10.3390/ma13112526.

**Nojomi**, S. (2019): Formulation of Anti-Wrinkle Cream from Total Extract of Glycine Max and *Equisetum arvense*. – Theses (P), Tabritz Univ. of Medical Sciences, Faculty of Pharmacy.

**Sedaghat** S. & S. Omidi (2019): Batch process biosynthesis of silver nanoparticles using *Equisetum arvense* leaf extract. – in: Bioinspired, Biomimetic and Nanobiomaterials, Bd. 8, Ausg. 3, Sept. 2019, S. 190–197 ICE-Publishing).